INVESTIGATION OF THE INDIVIDUAL, BINARY AND TERNARY CATALYTIC SYSTEMS IN OXIDATION OF 4-METHYLPYRIDINE

Zhexen G. S., Tolemisova D. K., Bilalova S. O., Imangazy A. M. A. B. Bekturov Institute of Chemical Sciences, 106 Valikhanov str., Almaty, 050010, Republic of Kazakhstan zhexen.g@gmail.com

We report here the investigation of the individual V_2O_5 , binary V_2O_5 -SnO₂, V_2O_5 -TiO₂, and ternary V_2O_5 -TiO₂-SnO₂ catalysts in oxidation of 4-methylpyridine (4-MP) to isonicotinic acid (INA). The experimental results were interpreted by the quantum chemical computation (Gaussian 09 W). We studied the influence of oxide-modifiers on the nucleophilic properties of vanadyl oxygen and also on the deprotonation enthalpy of methyl group of chemisorbed substrate.

According to experimental data, conversion of 4-MP increases in the following row of the catalysts: $V_2O_5 < V_2O_5 - SnO_2 < V_2O_5 - TiO_2$. In the same row, reactivity of the methyl substituent was increasing, indicated by the position of maximum yield of pyridine-4-aldehyde and INA at variation of the reaction temperature. Thereby, it shows that modification of V_2O_5 with dioxides of tin and titanium brings to increasing the catalytic activity.

The activity of the ternary V_2O_5 -TiO₂-SnO₂ catalytic system is possible to estimate by the shifting of maximum yield of pyridine-4-aldehyde and INA to the low-temperature area, and also by decreasing in temperature at which aldehyde intermediate disappears as a product of the reaction.

It is known, that SnO₂ may increase mobility of the V=O bond in the V₂O₅ lattice, thus contributing to the intensification of its dissociation and reduction to VO₂. One may consider that in the vanadium-titanium catalysts with SnO₂ addition, this function of tin dioxide has not manifested itself, because an extent of V₂O₅ reduction in the three-component V₂O₅-TiO₂-SnO₂ system has been approximately the same, and even less, than that in the two-component V₂O₅-TiO₂ catalysts without SnO₂ additions. Probably it depends on the fact that SnO₂ may play a role of an oxidizer in relation to the low vanadium oxides. Due to this function of SnO₂ in the VO₂-SnO₂ system an oxygen rearrangement was observed: SnO₂ was reduced to SnO, giving off its oxygen for oxidation of VO₂ into V₂O₅, and the formed SnO was easily and rapidly oxidized by the air oxygen again to SnO₂. Hence, it follows that SnO₂ may stabilize the structure of the three-component V₂O₅-SnO₂-TiO₂ system, giving off its oxygen to vanadium and facilitating reoxidation of the catalyst by the gas phase oxygen.

The obtained results demonstrate that TiO_2 gives to V_2O_5 new catalytic properties in an oxidizing process. Increasing activity of the vanadium oxide catalyst under the influence of TiO_2 additives, in our opinion, is associated with the change of chemical and phase composition of the catalyst during its preparation. This change influences on the reactionary ability of V_2O_5 oxygen. Titan dioxide, apparently, weakens the V=O bond in the lattice of V_2O_5 and promotes both acceleration of V_2O_5 transformation to VO_2 , and formation the new active centers on the surface of the catalyst, increasing its oxidizing and selective ability.

Modifying V_2O_5 with simultaneous addition of SnO_2 and TiO_2 leads to an increase in activity of the ternary catalytic system in the oxidation reaction of 4-MP in comparison with binary contacts.