EVALUATION OF CONFORMAL POPULATION (R)-4-MENTENONE

Belkina N. V. ${ }^{1}$, Vakulin I. V. ${ }^{1}$, Talipova G. R. ${ }^{1}$, Latypova E. R. ${ }^{1}$, Vakulina A. I. ${ }^{2}$
${ }^{1}$ Bashkir state University, Ufa, Russia
${ }^{2}$ Ural State University of Economics, Yekaterinburg, Russia
It is shown that (R)-4-menthenone, which is convenient for the synthesis of a whole spectrum of pheromones, has an unusual reactivity in comparison with other enon systems. The unusual behavior of (R)-4-menthenone may be due to the limited rotation of the isopropyl group and its steric effect on the availability of the $\mathrm{C}=\mathrm{C}$ bond electrons. Using the quantum-chemical non-empirical approximations of different levels of complexity, the relative stability of the (R)-4-tenenton conformations is estimated.

The most stable conformer la is characterized by the equatorial orientation of the methyl group at the 4 -position and the dihedral angle of the isopropyl group $\mathrm{HCCC}(=0) 24^{\circ}$. At this angle, the isopropyl group exerts the greatest screening effect on the $\mathrm{C}=\mathrm{C}$ bond in the cycle as compared to the conformers 1 b and 1d (Table 1).

Table 1

	$\Delta \mathrm{G}^{298}, \mathrm{~kJ} / \mathrm{mol}$			
	$1 \mathrm{c}-1 \mathrm{a}$	$1 \mathrm{~d}-1 \mathrm{~b}$	$1 \mathrm{~d}-1 \mathrm{c}$	$1 \mathrm{~b}-1 \mathrm{a}$
B3LYP/6-31G(d,p)	5.96	5.88	1.06	1.13
MP2/6-31G(d,p)	2.40	2.27	0.10	0.16
B3LYP/6-311++G(2d,p)	5.41	5.60	2.57	2.37
MP2/6-311++G(d,p)	8.31	8.00	1.54	1.85
G4 (MP2)	$\mathbf{4 . 0 4}$	$\mathbf{3 . 7 9}$	$\mathbf{2 . 6 4}$	$\mathbf{2 . 8 7}$

All other conformers are less favorable, but the difference in energy between them is not more than $8.3 \mathrm{~kJ} / \mathrm{mol}$, depending on the calculation method used. It is interesting to note that the calculated values obtained in the DFT methods are closest to the results of the highprecision composite method G4 (MP2). Despite the insignificant difference in energies, the populations of these conformers differ markedly. The share of the most stable conformer 1a is almost 2 times larger than the total fraction of all other conformers and 3 times greater than the nearest one in stability 1 b , but having a different orientation of the isopropyl group (Table 2).

Table 2

conformer	1 a	1 b	1 c	1 d
$\mathbf{w}(\%)$	63.4	19.9	12.4	4.3

