STRUCTURAL CHEMISTRY OF COPPER(I) π-COMPLEXES WITH ALLYL ESTERS OF SOME HETEROCYCLIC SUBSTITUTED ACETIC ACIDS <u>Slyvka Yu. I.</u>¹, Goreshnik E. A.², Myskiv M. G.¹ ¹Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79005 Lviv, Ukraine ²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia yurii.slyvka@lnu.edu.ua

Copper(I) π -complexes with alkenes have received considerable theoretical and practical interest because of their remarkable catalytic, luminescent activities and of other useful properties. Among them, a key role of heterocyclic allyl derivatives in crystal engineering of copper compounds with extremely rare occurred inorganic fragments were found in recent years. The synergy of a flexible allyl group and a conformationally rigid heterocyclic core plays an exceptionally crucial role in a stabilization of the unique fragments, resulting in compounds with enhanced nonlinear optical susceptibilities and a range of useful properties. In our work we firstly explored π -coordination activity of allyl esters of heterocyclic substituted acetic acids regarding copper(I) salts. For these purpose, two heterocyclic ligands have been prepared: allyl 1*H*-benzotriazol-1-ylacetate (Lig1) and diallyl 2,2'-(1,3,4-thiadiazole-2,5-diyldisulfanediyl)diacetate (Lig2) (Fig.).

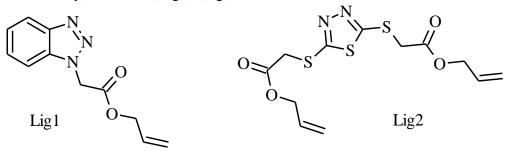


Fig. Ligands used for the complexes preparation

Crystalline copper π -compounds 1-4 (Table) were obtained under *ac* electrochemical conditions from alcohol solution of Lig1 or Lig2 and the corresponding copper(II) salts.

<u>rubic. Scielled er Jstar und for copper(i) & comprenes with Eigr und Eigr</u>						
	Composition	Space group	<i>V</i> , Å ³	Ζ	Density, g/cm ³	Coordination
1	$[Cu_2(Lig1)_4(BF_4)_2]$	<i>P</i> -1	1222.76(7)	1	1.59	σ/π,σ
2	$[Cu_2(Lig_1)_4(ClO_4)_2]$	<i>P</i> -1	1241.09(12)	1	1.60	σ/π,σ
3	$[Cu_2(Lig_2)Cl_2]$	<i>P</i> -1	906.62(7)	2	1.99	π, σ
4	[Cu ₂ (Lig2)Br ₂]	<i>P</i> -1	940.23(3)	2	2.23	π, σ

Table. Selected crystal data for copper(I) π -complexes with Lig1 and Lig2

Complexes 1 and 2 are isostructural and crystallize in centrosymmetric P 1 space group with two Lig1 molecules and one Cu(I) atom in the asymmetric unit. One independent Lig1 molecule is coordinated to the metal ions in a π,σ -bridging mode, being attached to copper by means of allylic C=C bond and one triazole N atom. Second Lig1 molecule (is σ -bonded only) together with F or O anion atoms completes coordination environment of Cu(I). Complexes **3** and **4** are also isostructural but their asymmetric units contain one organic ligand and two crystallographycally independent copper(I). Molecule Lig2 is π,σ -bonded to copper atoms via allylic C=C bond and two thiadiazole N atoms. Different coordination environment of Cu1 and Cu2 in the structures **3** and **4** leads to a formation of stepped cubane {Cu4Hal4} fragments.