NANOPOROSITY FORMATION OF BROWN COAL ADSORBENTS DURING HEAT-SHOCK ALKALI ACTIVATION

<u>Saberova V. O.</u>, Tamarkina Ju. V.

L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry, Kyiv

Tamarkina@nas.gov.ua

Alkaline activation is a well-known method for the porous structure development of adsorbents from any kind of carbonaceous solids: polymers, biomass, coke, pitch, graphene, different rank coals. A significant development of the specific surface area (S \geq 2000 m²/g) is observed when using large alkali/coal ratios (R \geq 2 g/g) under ordinary activation conditions, comprising two stages: 1) thermoprogrammed heating (4–10 deg/min) to 800 °C and 2) isothermal exposure (\geq 1 h). Carrying out stage 1 as a heat shock (HS) - the rapid introducing of samples into a reactor zone pre-heated up to 800 °C makes it possible to develop a surface up to S = 1500–2000 m²/g at low ratios R = 0.5–1.0 g/g.

The aim of this work is to study the nanoporous structure of brown coal adsorbents prepared by alkaline activation varying temperature of heat shock t_{HS} .

A t_{HS} increase in the range from 400 to 800 °C causes a decrease in the activated solid yield from 67 % to 25 % and an increase in the specific surface to S~2000 m²/g (Table). The main development of the surface occurs due to formation of pores with a diameter \leq 5 nm and only at t_{HS} =400 °C the pores with D \leq 4 nm are not formed. The micropores surface S_{mi} (D \leq 2 nm) and subnanopores surface S_{1nm} (D \leq 1 nm) develops predominantly at t_{HS} \geq 400 °C. Their portions (S_{mi}/S and S_{1nm}/S) sharply increase to 600 °C and then (from 600 °C to 800 °C) change slightly while the specific surface of these pores monotonically increases with increasing heat shock temperature.

Parameter	Heat shock temperature t _{HS} , °C						
	400	500	600	650	700	750	800
Yield, %	67	51	46	42	35	29	25
S, m ² /g	14.7	317	515	664	993	1481	1947
$S_{mi}, m^2/g$	0	252	478	601	930	1380	1869
$S_{1nm}, m^2/g$	0	166	444	581	917	1365	1840
S_{mi} / S_{Σ}	0	0.795	0.928	0.905	0.937	0.932	0.960
S_{1nm} / S_{Σ}	0	0.524	0.862	0.875	0.923	0.922	0.945
dS_1 , m ² /g·nm	0	538	1260	1850	2930	4230	7340
dS_2 , m ² /g·nm	0	169	49	38	21.6	9.2	69
dS_3 , m ² /g·nm	2.3	13.4	18.8	30.9	34.3	63.1	45.8
V_{Σ} , cm ³ /g	0.124	0.355	0.322	0.471	0.568	0.867	0.892
V_{mi} , cm ³ /g	0	0.051	0.142	0.180	0.283	0.426	0.526
V_{1nm} , cm ³ /g	0	0.126	0.169	0.197	0.293	0.433	0.547

Table. Yields and pore structure characteristics of brown coal adsorbents (R = 1.0 g/g)

The specific surface distribution, defined as (dS/dD)-D relationship, is characterized by maxima dS₁, dS₂, dS₃ in the pore diameter ranges D≤1 nm, micropores with D = 1–2 nm, mesopores with D>2 nm, respectively. The dS₁ maximum value increases with temperature according to the Arrhenius equation ($r^2 = 0.983$). The effective activation energy (E_{S1}) for a process of the subnanopores surface area increment E_{S1} = 56.7 kJ/mol, where mole is the quantity of surface atoms that must be removed to form a 1 m² specific surface. Pore size distribution as dV/dD-D relationship changes with t_{HS} in the same manner; the value of $E_{V1} = 56.7$ kJ/mol ($r^2 = 0.989$) is equal to the E_{S1} value.

Thus, the heat shock is a powerful method to develop the nanoporous structure of the brown coal adsorbent during alkaline activation.