ОПРЕДЕЛЕНИЕ УСЛОВИЙ ОБРАЗОВАНИЯ ДЕКАВОЛЬФРАМАТ-АНИОНОВ В ВОДНО-ЭТИЛЕНГЛИКОЛЬНОЙ СРЕДЕ

<u>Рысич А. В.,</u> Усачев О. М., Розанцев Г. М., Радио С. В. Донецкий национальный университет имени Васыля Стуса o.usachyov@donnu.edu.ua

Возросший в последние годы интерес к теме синтеза новых соединений, в частности полиоксосоединений на основе вольфрама (VI), являющихся перспективными в химии металлокомплексного и фото-катализа, требует поиска и создания воспроизводимых методик синтеза и целенаправленных систематических исследований в данной области. Исследование процессов образования и устойчивости полиоксовольфрамат-анионов в водных и водно-органических системах, первоначально базируется на построении математической модели комплексообразования таких частиц в растворах. Данный тип моделирования широко изучен и применяется для исследования поведения изополивольфрамат-анионов (ИПВА) в водных системах, однако отмечается что, для систем, содержащих органический растворитель проблема построения моделей комплексообразования решена недостаточно, хотя и известно, что в таких системах при высоких значениях кислотностей, происходит стабилизация частиц с низким эффективным зарядом, таких как $W_6O_{19}{}^2$, $W_{10}O_{32}{}^4$ и их протонированных форм, обладающих фотокаталитическими свойствами.

В данной работе методами рН-потенциометрического титрования и математического моделирования с использованием программы CLINP 2.1 исследованы взаимодействия в водно-этиленгликольном растворе натрия вольфрамата $(C_W=5\cdot 10^{-3}\ \text{моль/л})$ при разных кислотностях $[Z=m/n=\nu(H^+)/\nu(WO_4^{2+})]$ и постоянной ионной силе $I(NaCl)=0,1\ \text{моль/л}.$ На основании полученных данных были подобраны модели равновесных процессов образования частиц, которые адекватно описывают экспериментальные зависимости pH=f(Z). Рассчитаны концентрационные константы образования вольфрамсодержащих форм в водно-этиленгликольном растворе. Предложенная оптимальная модель, включающая следующие ИПВА и рассчитанные для них концентрационные константы равновесий образования представлена в табл. 1.

Таблица 1. Значения логарифмов концентрационных констант равновесия lgKc реакций образования ИПВА (с доверительной вероятностью 95%) в системах с разным

содержанием этилентликоля						
	Z	$\lg K_C$ (S) (I(NaCl) = 0,1 моль/л) при содержании				
ИПВА	образо-	этиленгликоля, ф, об. %				
	вания	$\varphi = 10$	$\varphi = 20$	$\varphi = 30$	$\varphi = 40$	$\varphi = 50$
$W_6O_{20}(OH)_2^{6-}$	1,00	52,85		51,54	51,34	51,67
$W_{12}O_{40}(OH)_2^{10-}$	1,16	122,56	118,71	119,65	117,11	117,13
$HW_{12}O_{40}(OH)_2^{9-}$	1,25				122,39	122,66
$H_2W_{12}O_{40}(OH)_2^{8-}$	1,33	135,56	130,97	131,48	127,69	127,63
$W_{12}O_{38}(OH)_2^{6-}$	1,50	146,78	142,09	141,86	137,09	136,82
$HW_{10}O_{32}^{3-}$	1,70	131,68	127,33	126,61	121,58	121,22
$H_2W_{10}O_{32}^{2-}$	1,80		131,75	130,05		122,84
$H_3W_{10}O_{32}^-$	1,90	140,36	134,75	125,26		