
NEW TERNARY COMPOUND GdMn_{1-x}Zn_{1+x}, $-0.075 \le x \le 0.075$

<u>Chorna N.</u>, Porodko O., Zelinska O., Kordan V., Zelinskiy A., Pavlyuk V. Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., 79005 Lviv, Ukraine chorna.nata15@gmail.com

Systematic investigation of the ternary system Gd–Mn–Zn is driven by a practical interest in this type of systems due to their possible application as hydrogen sorption materials and electrode materials for NiMH-batteries. Previous studies revealed the formation of few solid solutions on the basis of binary phases with homogeneity ranges not exceeding 5 at. % and three new ternary compounds – Gd₂Mn₃Zn₁₄ with Th₂Zn₁₇-type structure (space group *R*-3*m*) [1]), GdMn_{1.075-0.925}Zn_{0.925-1.075} and ~Gd₂₃₍₁₎Mn₄₆₍₁₎Zn₃₁₍₁₎ with unknown crystal structures and slight homogeneity ranges. Solid solutions on the basis of GdMn₂ demonstrated hydrogen sorption ability [2].

Samples of alloys were synthesized by arc melting of pure metals (5 wt. % excess of Mn and Zn) under a purified argon atmosphere. The alloys were remelted one time for better homogenization and annealed at 500° C for two months. X-ray phase analysis and energy dispersive X-ray spectroscopy (Tescan VEGA3 LMU microscope, EDX-analyzer with X-Max^N20 detector) showed the formation of a new compound GdZn_{1-x}Mn_x (**Fig.**). For instance, the alloy Gd_{33,3}Mn_{33,3}Zn_{33,3} contained two phases – a solid solution GdZn_{1-x}Mn_x and a ternary compound GdMn_{1-x}Zn_{1+x}. The alloy Gd₃₃Mn₂₇Zn₄₀ contained three phases – a solid solution GdZn_{1-x}Mn_x, at ernary compound GdMn_{1-x}Zn_{1+x}. The alloy Gd₃₃Mn₂₇Zn₄₀ contained three phases – a solid solution GdZn_{1-x}Mn_x, a ternary compound GdMn_{1-x}Zn_{1+x}, and an unknown ternary phase of preliminary composition ~Gd₂₃₍₁₎Mn₄₆₍₁₎Zn₃₁₍₁₎. The refinement of the crystal structure of GdMn_{1-x}Zn_{1+x}, –0.075 $\leq x \leq 0.075$ from powder data by least square procedure proved that it crystallizes in a hexagonal CaIn₂-type structure (space group *P*6₃/*mmc*, *a* = 4.192(2) Å, *c* = 7.08(1) Å, V = 107.8 (1) Å³. Investigation of the hydrogen sorption and electrochemical properties of this compound will be a topic of our further studies.

Light grey phase $-Gd_{48.1(5)}Mn_{5.1(8)}Zn_{46.8(7)}$; Grey phase $-Gd_{34.1(3)}Mn_{32.8(6)}Zn_{33.1(9)}$

а

Light grey phase $-Gd_{48.1(3)}Mn_{4.0(7)}Zn_{47.9(7)}$; Grey phase $-Gd_{34.4(4)}Mn_{30.9(7)}Zn_{34.7(7)}$; Dark grey phase $-Gd_{23(1)}Mn_{46(1)}Zn_{31(1)}$

Fig. SEM-images (BSE-mode) of Gd_{33.3}Mn_{33.3}Zn_{33.3} (a) and Gd₃₃Mn₂₇Zn₄₀ (b) alloys

[1] N. Chorna, O. Zelinska, G. Dmytriv, V. Pavlyuk, A. Zelinskiy, V. Kordan, A. Mar. Coll. Abs. XIV Int. Conf. Cryst. Chem. Intermet. Compd. Lviv, September 22-26, 2019. P. 119.

[2] N.O. Chorna, V.M. Kordan, A.M. Mykhailevych, O.Ya. Zelinska, A.V. Zelinskiy, K. Kluziak, R.Ya. Serkiz, V.V. Pavlyuk. *Vopr. Khim. Khim. Tekhnol.* 2 (2021) 139-149.