
ELECTROCHEMICAL HYDROGENATION OF THE Y2Ni17:Lix,Mgy ALLOY

Kordan V., <u>Matsko E.</u>, Nytka V., Tarasiuk I., Pavlyuk V. Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., 79005 Lviv, Ukraine evelina.matsko@lnu.edu.ua

 R_2M_{17} multicomponent intermetallics are the base of numerous functional materials. Many compounds with the 2:17 stoichiometry crystallize in Th₂Ni₁₇ and Th₂Zn₁₇ structure types, that are derivatives from CaCu₅-type structure. All these phases are interesting as promising magnetic and hydrogen-sorption materials.

Sample with the nominal composition Y_{10.5}Ni_{83.5}Li₃Mg₃ was synthesized by arc-melting, than remelted several times for better homogenization. X-ray phase analysis and scanning electron microscopy showed that the alloy consisted of two phases: the Tb₂Ni₁₇:Li_x,Mg_y (space group *P*6₃/*mmc*) main phase and minor amount of Ni (space group *Fm*-3*m*). Energy dispersive X-ray spectroscopy (Tescan VEGA3 LMU microscope, EDX-analyzer with X-Max^N20 detector) confirmed the formation of these phases. Electrochemical hydrogenation of the studied alloy was carried out in Swagelok-type battery prototype using alkaline solution of 6 M KOH as electrolyte. Under experimental conditions we obtained hydride with H-content ~2.15 H/f.u. Cell parameters of quaternary phase Y_{2-2x}Ni_{17-2y}Li_{x¹y}Mg_{x¹y} before hydrogenation were: *a* = 8.3162(8) Å, *c* = 8.0534(10) Å, *V* = 482.35(8) Å³. Cell parameters isotropically increased after H-insertion. Composition of electrode material from EDX-analysis before and after hydrogenation was Y_{10.1}Ni_{85.8}Mg_{4.1} and Y_{9.5}Ni_{86.9}Mg_{3.6}, respectively. After hydrogenation we observed reduced grains size and significantly etched surface (Fig.). The elemental distribution on the surface was homogeneous (from BSE-mode detector).

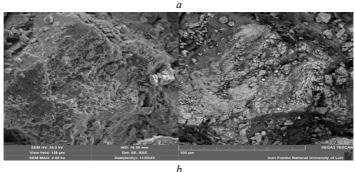


Fig. SEM-images of $Y_{2-2x}Ni_{17-2y}Li_{x+y}Mg_{x+y}$ before (*a*) and after hydrogenation (*b*) *Research funding: National Research Foundation of Ukraine (2022.01/0064).*