SUPPORTED METAL OXIDES AND N-HYDROXYPHTHALIMIDE IN CATALYSIS OF THE OXIDATION OF BENZYLIC C-H BONDS

Sheparovych R.¹, Novokhatko A.¹, Suprun W.², Opeida I.³

¹Department of Physical Chemistry of Fossil Fuels InPOCC NAS of Ukraine, Lviv, Ukraine

²Institute of Chemical Technology, Martin-Luther-Universität Halle-Wittenberg, Germany

³L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry, NAS

of Ukraine, Kyiv, Ukraine

sheparomko@ukr.net

The aerobic liquid-phase oxidation of alkylarene (RH) in the presence of a binary catalytic system containing N-hydroxyphthalimide (NHPI) and supported V, Mn, and Cu oxides (TMO) was studied. The heterogeneous catalysts with single active component such as V₂O₅, MnO_x, and CuO_x and bi-components V₂O₅-MoO₃ V₂O₅-WO₃, and V₂O₅-SbO_x supported onto TiO₂, TiO₂-SiO₂, and Al₂O₃-SiO₂ were prepared and characterized. The kinetics of the aerobic oxidation of alkylarene in the presence of a binary catalytic system NHPI and TMO was studied using molecular oxygen (under 760 mm Hg) and acetonitrile (ACN) as a solvent, with volume ratio of cumene to ACN as 1:1, and the reaction temperature was 70 °C. The major product of cumene oxidation was cumene hydroperoxide. Correlation was found between the catalytic activity of the TMO + NHPI system and the acidic properties of TMO (measured by NH₃ TPD). The most active among the binary systems were MnOx \cong VO_x. It was found, that

Table. Oxidation of hydrocarbons catalyzed by $[MnO_x(TiO_2SiO_2)] = 5 g/L$, [NHPI] = 30 mM

	Substrate	[RH] M	W*10 ⁵ mol/Ls	ΔH_{f} kcal M ⁻¹
1	Cumene	3.59	17.0	-4.8
2	Tetralin	3.67	13.6	-1.7
3	o-Xylene	4.15	2.2	4.5

at [NHPI] = 0, for all oxide W $< 0.2 \times 10^5$ mol/Ls

synergistic effect promotes catalytic efficiency of Mn/Ti-Si + NHPI and V/Ti + NHPI systems.

A comparison of the catalytic properties of Mn and V oxides with their molecular hydrogen reduction profiles shows, that the supported Mn-oxide is more active due to its lower temperature of reduction.

The catalytic cumene oxidation was presented [1] with the reactions scheme identifying the role

of heterogeneous initiation and homogeneous propagation and termination steps for the oxidation proceeding via free-radical mechanism. In order to evaluate the efficiency of the binary catalytic system in the oxidation of various substrates and to find a relationship between catalytic activity and the chemical nature of TMO, we used a thermochemical approach with semi-empirical method for calculation of reaction enthalpies. Comparison of kinetic data and calculated enthalpies of key reactions of the main oxidation stages with their calculated enthalpies showed the following:

a) the reaction enthalpy for a certain alkylarene PINO[•] + RH \rightarrow R[•] + NHPI, which occurs in the liquid phase, contributes to the catalytic activity during the oxidation reaction;

b) the efficiency of the catalytic system with various oxides in the oxidation is proportional to the enthalpy of the reaction of the surface group ${}_{s}M=O$ on the of the oxide with the NHPI ${}_{s}M=O + NHPI \rightarrow {}_{s}MO-H + PINO^{\bullet}$ producing radical, which plays the main role in catalysis.

1. Opeida, I. A., Sheparovych, R. B., & Suprun, W. Y. (2023). Kinetic analysis of aerobic oxidation catalyzed by supported Mn and V oxides and N-hydroxyphthalimide. *Journal of Catalysis*, 424, 197–210.