CURING KINETICS OF CYANATE ESTER RESIN WITH 3-AMINOPROPYL OLIGOSILSESQUIOXANE

<u>Shulzhenko D. M.</u>¹, Gumenna M. A.¹, Polunkin E. V.², Starostenko O. M.¹ ¹Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv, Ukraine ²V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv, Ukraine darkblue1cherry2black@gmail.com

In the present study, the kinetic peculiarities of dicyanate ester of bisphenol E (DCBE) polycyclotrimerization to high-performance polycyanurate (PCN) in the presence of 3-aminopropyl oligosilsesquioxane (AP-OSS) with contents of 0.1, 0.5 and 1.0 wt.% were investigated by DSC technique. AP-OSS was synthesized by the hydrolysis and polycondensation of trifunctional monomer γ -aminopropyltrimethoxysilane. Mass spectrometry with matrix-assisted laser desorption ionization (MALDI) technique has been used to characterize AP-OSS synthesized. The investigations were performed using DSC 25 differential scanning calorimeter in nitrogen atmosphere by heating from 25 to 350 °C at a heating rate of 5 °C/min.

The catalytic effect of AP-OSS was found for all the compositions studied. The values of the exotherm peak temperature (T_p) and the reaction enthalpy (ΔH) of the cured PCN-based nanocomposites were determined. It was established that for the individual DCBE sample, a T_p value was equal to ~272 °C (Fig. 1*a*). For the DCBE/AP-OSS compositions the corresponding T_p values shifted toward much lower temperatures, viz. to $T_p \sim 248-261$ °C in dependence on the content of AP-OSS. Furthermore, the enthalpy of the cure reaction ΔH for the individual DCBE was calculated to be $\Delta H \sim 974$ J/g and it decreased significantly (to $\Delta H \sim 817-860$ J/g) depending on the content of AP-OSS for all the compositions studied. The catalytic effect of the AP-OSS is also confirmed by the time dependencies of the conversion (α) of cyanate groups of DCBE since for the DCBE/AP-OSS compositions the reduction of induction period of the reaction was observed and the polymerization started early (Fig. 1*b*).

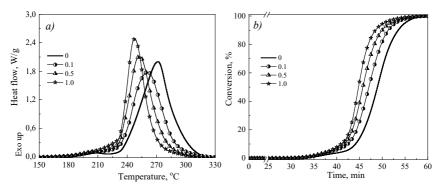


Fig. 1. DSC kinetic profiles (*a*) and time dependencies of conversion (*b*) for the individual DCBE and DCBE/AP-OSS compositions (AP-OSS content indicated in the plot)

We conclude that the thermal polycyclotrimerization of DCBE is catalyzed by the reactive primary amino groups of synthesized AP-OSS, that provides polymerization of DCBE at lower temperatures.