COMPOSITIONS OF LITHIUM LUBRICANTS

Bodachivska L. Yu., Venger I. O.

V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine bodach@ukr.net

Hydroxylated fatty acids of used food oil as an emulsifier for lubricants were synthesised by epoxidation of unsaturated fatty acids followed by hydrolysis by acylglycerol grouping and oxirane rings [1–3]. Samples (1, 2) of lithium greases were developed. Sample 1 – lithium lubricants based on a commercial emulsifier, sample 2 – lithium lubricants based on hydroxylated fatty acids of used cooking oil (Table).

Table. Comparative properties of lithium lubricants based on petroleum oil

Indicator	Testing method	Values of indicators	
		Sample 1	Sample 2
Penetration at 25 °C at stirring, mm·10 ⁻¹ : – 60 double cycles (<i>P</i> ₁) – 100,000 doubles cycles (<i>P</i> ₂) – mechanical stability, change Δ <i>P</i>	ISO 2137	225 249 24	235 255 20
Dropping temperature, °C	ISO 2176	198	201
Tribological characteristics on four ball machine at the temperature of (20±5) °C: – critical load (<i>Pc</i>), N	GOST 9490	657	696
Resistance to oxidation: increase in acid number (120 °C, 10 hours), mg KOH/g	GOST 5734	0.26	0.24
Corrosive action on copper	ASTM D 4048	1a	1a

The lithium lubricant (sample 2) are characterized by high mechanical properties(a change in penetrations after moving of 100,000 double cycles of 20 mm·10⁻¹, temperature propertie (dropping temperature above 201 °C), tribological characteristics (critical load are 696 N) and are also resistant to oxidation, do not cause corrosion of non-ferrous metals, and are able to operate in contact with water and is not inferior to lithium grease based on an industrial analogue (sample 1).

References

- 1. Бодачівська Л.Ю. Біорозщеплювальні поверхнево-активні речовини з побічних продуктів виробництва рослинних олій у технічних системах. Питання хімії та хімічної технології. 2022. № 6. С. 3-11. DOI: https://doi.org/10.32434/0321-4095-2022-145-6-3-11.
- 2. Bodachivska L.Yu. Sidestreams from the vegetable oilproduction as feedstock for surfactantsand treir derivative technical systems. Catalysis and Petrochemistry. 2021. № 31. C. 55-61. doi: 10.15407/kataliz2021.31.055
- 3. Bodachivska L.Yu. Use of synthesised ultradispersed substances in technological systems. Catalysis and Petrochemistry. 2024. N_2 35. C. 107-115. DOI: https://doi.org/10.15407/kataliz2024.35.107