РЕАКЦИОННАЯ СПОСОБНОСТЬ 1-МЕТИЛ-3-АЛКИЛ-2-(ГИДРОКСИМИНО-МЕТИЛ)ИМИДАЗОЛИЙ БРОМИДОВ В ПРОЦЕССАХ ПЕРЕНОСА ФОСФОНИЛЬНОЙ ГРУППЫ

<u>Капитанов И. В.</u>, Сердюк А. А., Бураков Н. И., Шумейко А. Е., Карпичев Е. А. Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАНУ Институт органической химии НАНУ ivkapitanov@gmail.com

Амфифильные 1-метил-3-алкил-2-(гидроксиминометил)имидазолий бромиды (I – III) являются привлекательной основой для мицеллярных систем, способных эффективно расщеплять эфиры кислот фосфора и серы. Преимуществом данных соединений является оптимальное соотношение основности и нуклеофильности их функциональной оксимной группы, позволяющее проводить процессы расщепления сложноэфирных связей с высокими наблюдаемыми скоростями в относительно «мягких» условиях (pH \leq 9.5).

Изучение реакционной способности соединений I-III в процессах расщепления модельного фосфорорганического субстрата $H\Phi \mathcal{J} \ni \Phi C$ и их анализ в рамках псефдофазной распределительной модели (см. табл.) показало, что нуклеофильность оксиматной группы при варьировании длины алкильного заместителя существенно не изменяется, в то время как наблюдаемые мицеллярные эффекты отличаются весьма существенно. Это является следствием того, что наибольший вклад в увеличение наблюдаемой скорости вносит эффект концентрирования участников реакции в мицеллах, который, в свою очередь, напрямую зависит от гидрофобных свойств веществ I-III.

Таблица. Физико-химические свойства соединений I – III и их реакционная способность в процессе расщепления НФДЭФС (вода; 25 °C)

No	pK _a	χ	$k_2^{\rm M} / V_{\rm M}, { m c}^{-1}$	$k_2^{{}_{\scriptscriptstyle M}}$, л моль $^{-1}$ с $^{-1}$	$K_{\rm S}$, л/моль	ККМ, моль/л
I	8.48 ($\chi = 1.0$) 7.93 ($\chi = 0.1$)	1.0	0.58	0.29	55	$1.1 \cdot 10^{-3}$
П	8.53 ($\chi = 1.0$) 7.77 ($\chi = 0.1$)	1.0	0.54	0.22	100	3.5·10 ⁻⁴
III	$7.74 (\chi = 0.1)$	0.25 0.125	0.50 0.53	0.20 0.21	190 200	2.5·10 ⁻⁴ 2.5·10 ⁻⁴

Примечания. Величины р K_a получены спектрофотометрическим методом; χ – мольная доля соединений I – III в сомицеллах с ЦТАБ.