КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА Е- И Z-ФОРМ 1,3-ДИМЕТИЛ-2-(ГИДРОКСИМИНОМЕТИЛ)ИМИДАЗОЛИЙ ИОДИДА

<u>Капитанов И. В.</u>, Сердюк А. А., Бураков Н. И., Шумейко А. Е., Карпичев Е. А. Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАНУ Институт органической химии НАНУ ivkapitanov@gmail.com

1,3-Диметил-2-(гидроксиминометил)имидазолий йодид (OxH) в зависимости от конфигурации оксимной группы может существовать в виде двух изомеров — Е- и Z-форм.

$$C_{Ox} \xrightarrow[H_3C]{\textbf{H}} C_{Ox} \xrightarrow[E-\phi opma \ Oxh]{\textbf{N}} C_{H_3} C_{Ox} \xrightarrow[E-\phi opma \ Oxh]{\textbf{N}} C_{H_3} C_{Ox} \xrightarrow[E-\phi opma \ Oxh]{\textbf{N}} C_{H_3} C_{Ox} \xrightarrow[NO+h]{\textbf{N}} C_{H_3} C_{Ox} C_{H_3} C_{Ox} C_{H_3} C_{Ox} C_{H_3} C_{Ox} C_{H_3} C_{Ox} C_{H_3} C_{Ox} C_{$$

Поскольку величины р K_a таких изомеров могут существенно отличаться, что, несомненно, будет оказывать существенное влияние на их свойства, нами с помощью ЯМР-титрования определены их кислотно-основные свойства.

Полученные зависимости химического сдвига каждой из групп протонов от рН среды анализировались с помощью уравнения $\delta = \delta_0 - \Delta \delta \cdot [K_a/(K_a + a_{H^+})]$, где δ – наблюдаемая величина химического сдвига сигнала группы протонов при данном значении рН, м.д.; δ_0 – положение максимального смещения сигнала, соответствующая анионной форме, м.д., $\Delta\delta$ – величина смещения сигнала, м.д.; K_a – константа кислотной ионизации; a_{H^+} – активность ионов водорода. Результаты анализа и параметры уравнения представлены в таблице.

Таблица. Кислотно-основные свойства (р K_a) 1,3-диметил-2-(гидроксиминометил)имидазолий иодида (ОхН) по данным ¹Н ЯМР-спектроскопии; 25 °C

Сигнал	Е-форма			<i>Z</i> -форма		
	A_{Ox}	B_{Ox}	C_{Ox}	A_{Ox}	B_{Ox}	C_{Ox}
δ ₀ , м.д.	8.43	7.49	3.93	7.81	7.55	3.80
Δδ, м.д.	0.29	0.15	0.10	0.20	0.13	0.10
pK_a	8.60±0.06	8.58±0.08	8.56±0.08	8.54 ± 0.06	8.50 ± 0.08	8.51±0.08
$pK_a(cp.)$	8.58±0.08			8.52±0.08		

Примечания. В качестве растворителя использован раствор 1 M KCl в смеси D_2O / H_2O (20:80). Погрешность расчета величин δ_0 и $\Delta\delta$ составляла \pm 0,01 м.д.

Данные таблицы свидетельствуют о том, что р K_a E- и Z-форм 1,3-диметил-2-(гидроксиминометил)имидазолий йодида (OxH) в пределах погрешности эксперимента не отличаются между собой.