СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ФОРМ АСКОРБИНОВОЙ КИСЛОТЫ В ПРОЦЕССАХ РАДИКАЛЬНО-ЦЕПНОГО ОКИСЛЕНИЯ

Ефимова И. В., <u>Смирнова О. В.</u>, Опейда И. А. Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, г. Киев O.V.Smirnova@nas.gov.ua

Среди ингибиторов радикально-цепного окисления особый интерес вызывают биоантиоксиданты, ярким представителем которых является аскорбиновая кислота (АК). Все биохимические процессы, в которых принимает участие АК, основаны на ее способности обратимо окисляться до дегидроаскорбиновой кислоты (ДАК). Этим обстоятельством и осложнено изучение антиоксидантных свойств АК в свободнорадикальных процессах окисления, развитие которых протекает как в водной, так и в липидной фазе.

В данной работе УФ- и ЯМР-спектроскопическими методами доказано существование восстановленной, окисленной и ионных форм АК в апротонной среде и возможность использования именно апротонных систем в качестве модельных для определения того, как гидрофильная по своей природе АК ведет себя в органической фазе в процессах радикально-цепного окисления.

УФ-спектроскопическим методом изучены растворы АК в диметилсульфоксиде, воде и кумоле. Зафиксировано существование аскорбат-иона AH^- , анион-радикала A^{\perp} и 2,3-дикетогулоновой кислоты (ДКГК), которая образуется в результате окисления дегидроаскорбиновой кислоты. Получены зависимости оптической плотности образованных в данном растворе частиц от времени.

ЯМР-спектроскопическим методом идентифицированы продукты инициированного окисления АК в среде диметилсульфоксида. В таблице приведены данные по ¹³С ЯМР спектрам АК, ДАК и ДКГК, а также исследуемого раствора до окисления (исходная АК) и окисленного раствора (продукт). Полученный в ходе эксперимента продукт имеет схожие химические сдвиги с ДАК, предполагая аналогичную структуру. Таким образом, доказано, что в данных условиях АК окисляется только до ДАК.

Таблица. Данные по ¹³С ЯМР спектрам L-аскорбиновой кислоты (L-AK), L-дегидроаскорбиновой кислоты (L-ДАК) и дикетогулоновой кислоты (ДКГК), а также исследуемой системы до окисления (исходная АК) и окисленной системы (продукт)

Вещество	Химические сдвиги, δ, м. д.					
	C1	C2	C3	C4	C5	C6
AK	170.6	117.9	152.9	74.8	68.3	61.9
исходная АК	170.68	117.23	152.95	74.59	68.31	61.95
ДАК	173.6	91.4	105.7	87.6	73.0	76.2
ДКГК	174.5	94.7	94.4	74.6	68.6	62.5
Продукт	171.28	92.21	102.97	84.59	69.78	75.15

Изучение инициированного АИБН окисление АК в апротонной среде при температуре 348 К показало, что единственным продуктом окисления является ДАК, дальнейшее окисление ДАК в данных условиях не происходит.