## QUANTITATIVE RELATIONSHIP BETWEEN ANTIOXIDANT ACTIVITY OF 4-HYDROXYCINNAMIC ACID DERIVATIVES AND PARTICULARITIES OF THEIR ELECTRONIC STRUCTURE: DFT STUDY

Gorbachev M. Yu., Gorinchoy N. N., Balan I. Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova

ngorinchoy@yahoo.com

The derivatives of trans-4-hydroxycinnamic acid are well known as food antioxidants which can effectively 'quench' free radicals. As a measure of the antioxidant activity of these derivatives, the rate constants of their reaction with the stable radical DPPH\* can be used [1].

To reveal the electronic factors determining the rate of reaction between the title compounds and the radical DPPH\*, we have studied a number of these compounds using the DFT B3LYP(6-31G) method. The calculated molecular systems along with the corresponding experimental data [1] are given in the Table 1. The two last columns of the Table 1 contain the calculated energy values E of the HOMOs of the neutral molecules and their phenoxide anions. The calculations were performed taking into account the ethanol reaction medium.

| Ns                                                                                               | Compound        | $k^{(a)}$        | lgk   | E <sub>HOMO</sub> (eV) |                 |  |
|--------------------------------------------------------------------------------------------------|-----------------|------------------|-------|------------------------|-----------------|--|
|                                                                                                  | 1               | $[M^{-1}s^{-1}]$ | U     | neutral form           | phenoxide anion |  |
| 1                                                                                                | p-Coumaric acid | 1                | 0     | -6.125                 | -4.413          |  |
| 2                                                                                                | Ferulic acid    | 240              | 2.380 | -5.894                 | -4.256          |  |
| 3                                                                                                | Sinapic acid    | 4000             | 3.602 | -5.792                 | -4.139          |  |
| 4                                                                                                | Methyl ferulate | 278              | 2.444 | -5.860                 | -4.210          |  |
| 5                                                                                                | Methyl sinapate | 20000            | 4.301 | -5.760                 | -4.093          |  |
| <sup>(a)</sup> The values of k were determined in the other and medium at $T = 208.15 \text{ K}$ |                 |                  |       |                        |                 |  |

Table 1. The experimental and theoretical data

The values of k were determined in the ethanol medium at T = 298.15 K.

The two regression equations describing the linear dependences between the quantities lgk and E for both the neutral forms (1) and their phenoxide anions (2) were found:

| $\lg k = 11.257E + 68.809$ | (1) and | lgk = 13.120E + 57.957, (2) | 2) |
|----------------------------|---------|-----------------------------|----|
| (R = 0.985; S = 0.320)     |         | (R = 0.993; S = 0.226)      |    |

whose plots are presented in the Figure 1.

Eq. (2) means that the rate of electron transfer from the phenoxide anion to DPPH\* (which is the rate-determining step) depends on its potential energy  $E_{HOMO}$ . At the same time, Eq. (1) shows that the other pathway of the studied reaction is also possible. It consists in the electron transfer from the neutral systems 1-5 to the protonated form of DPPH\*. So, in our previous work [2] we have shown the similar pathway involving the protonated form of DPPH\* takes place also for the reactions of dihydroxyfumaric acid and its dimethyl ethers with DPPH\* and includes formation of the charge-transfer complex between reagents.



1. M.C.Foti, C. Daquino, C. Geraci, J.Org.Chem., 2004, vol. 69, 2309-2314.

2. M. Gorbachev, N. Gorinchoy, I. Arsene, Chem. J. Mold. 2015, 10(1), 89-94.